Understanding Corrosion Mechanisms in Oxy-Fired Systems

B. A. Pint, S. Dryepondt, J. K. Thomson Oak Ridge National Laboratory Oak Ridge, TN 37831-6156

> Y. Zhang (sub-contractor) Tennessee Technological University Cookeville, TN 38505

Research sponsored by the U.S. Dept. of Energy, Fossil Energy Advanced Research Materials Program (V. Cedro project monitor)

Acknowledgments

ORNL

- G. Garner, T. Lowe, M. Stephens, M. Howell oxidation experiments
- J. Moser, T. Jordan, A. Willoughby, D. McClurg creep testing
- H. Longmire (retired), T. Jordan metallography
- T. Lowe SEM, image analysis
- D. Leonard EPMA

12MWh/yr per U.S. resident Where will it come from? coal? how?

Conventional: "USC" -PC Turk, AR, 595°C Gasification:

-IGCC Kemper Co., MS -IGCC Edwardsport, IN Oxy-firing: -FutureGen 2.0 (?)

FutureGen 2.0: U.S. demo of oxy-firing

Germany: 30MW oxy-fired pilot plant (Alstom)

Several studies published by Alstom (Bordenet) Oxy-firing literature tends to focus on worst case

Current Tasks & Timeline

- Goal: Mechanistic understanding to enable accurate oxy-fired corrosion modeling
- 1. Steam/gas corrosion (no ash)
- 2. Fireside corrosion (with ash)
- 3. Environment-mechanical property effect - effect of steam on creep (Dryepondt)
- 4. Coatings
 - fabrication and model (TTU subcontract)
 - effect on mechanical properties (Dryepondt)
- A. ~600°C ferritic/martensitic steels (FY10-12)
- B. ~650°-700°C austenitic steels (FY11-13)
- C.~700°-750+°C Ni-base alloys
 - creep testing at 800°C (FY11-12)
 - ash testing 600°-800°C (FY12)

What's different here?

Many previous & current studies of oxy-firing & CO₂

- "Oxy" worse: Speigel (2006) + Corvino (2008)
- Complicated: boiler OEMs have advantage
- CO₂ effect: Jülich, U. Pitt & Australia (Young)

Issues with fireside corrosion experiments: Different experimental conditions (if published) 1000h vs. 10 x 100h (ash re-supply) Ash/gas/temp. variables Use of Pt catalyst (SO₂/SO₃)

* Evaluate experimental parameters (FY12)

Typically, only commercial alloys evaluated Prior work showing Cu-containing alloy attacked Was it an effect of Cu or other element(s)?

* Model alloys to better understand composition

Not just commercial alloys Model alloys: better composition understanding

Cast 400g, hot-roll to 8mm: cut coupons & rods

Corrosion testing w/o ash Determine effect of higher CO₂, H₂O, SO₂...

17bar or 1bar

gas only, no ash - H_2O only - Ar-50%CO₂* - H_2O -50%CO₂* (*CO₂+1500ppmO₂)

Synthetic ash: $30\%Fe_2O_3-30\%Al_2O_3-30\%SiO_2-5\%Na_2SO_4-5\%K_2SO_4$ Gas: N₂-CO₂-H₂O-O₂-SO₂ Temperature: 600°C Time: 500h (1 cycle)

25x6mm rod in porous alumina

Continuing to establish methodology + procedure

- Current focus on characterization process

Summary: Gas only exposure

FY11, 2kh

FY11, 2kh

FY12, 2kh

FY12, 2kh

started

1. 600°C:

- a. steam 1 bar
- b. Ar-50%(CO₂-0.15O₂)(buffer)
- c. 50%(CO₂-0.15O₂)-50%H₂O FY11, 5kh
- d. $50\%CO_2$ - $50\%H_2O(no buffer)$
- e. Ar-10%(CO₂-0.15O₂)-50%H₂O
- f. Ar-50% H_2O
- 2. 650°C:
 - a. steam 1 bar FY11-12, 5kh b. $50\%(CO_2-0.15O_2)-50\%H_2O$ started c. Ar- $50\%(CO_2-0.15O_2)$ next

3. 800°C steam 17bar: A-USC follow on, started

4. 550°C steam 1bar (compare 17bar) started

600°C: CO₂ content and buffer Followup on $H_2O-50\%(CO_2-0.15O_2)$

FY11 results

Little effect of C(CO₂) & buffer 600°C, 4 x 500h cycles, 1bar

FY11 results

FY12 results

No buffer: 50%H₂O-50%CO₂ Lower CO₂: Ar-50%H₂O-10%(CO₂-0.15O₂) Both: little effect on 2,000h mass change Need to complete metallography comparison

Model 347 alloys: 650°C steam Cast, hot rolled Fe-Cr-Ni-1.5Mn-0.4Si-0.8Nb-0.09C

5,000h 1bar exposure completed in March 2012 Higher (12%) Ni content very beneficial 2000h 17 bar completed April 2012 (no effect) Concern: model alloys better than 347HFG & S304H

Summary: Ash exposure

- 1. 600°C: (oxy-fire retrofitting current plants) air/oxy-firing (hot gas recirculation) (done) low H₂O/low SO₂ (done) FY12: low H₂O/low SO₂ (cold gas recirculation)
- 2. 650°C: (current USC plants) air/oxy-firing (run/awaiting metallography)
- 3. 700°C:

air/oxy-firing (later this year)

- 4. 750°C: (A-USC range) air/oxy-firing (run/awaiting metallography)
- 5. 800°C: (A-USC range) air/oxy-firing (later this year)

Little effect of gas at 600°C Synthetic coal ash, 500h exposures in 4 gases

Higher CO₂ environments not detrimental Expected the lower SO₂ environment to lower attack - same synthetic ash used in all cases

Little effect of gas at 600°C Synthetic coal ash, 500h exposures in 4 gases

Higher CO₂ environments not detrimental Expected the lower SO₂ environment to lower attack - same synthetic ash used in all cases

310-740 differences accurate? Highest alloyed examples with minimal attack

Sometimes focus on deepest penetrations Need more images at "medium" magnification Metal loss from 6mm diameter rod is minimal

Reanalyzed: 310HCbN < 740 High Ni-content alloy not most protective at 600°C

Ash experiment issues

Experiments:

- air/oxy: worst case comparison
- "milder" oxy-firing: lower H₂O or SO₂
- add cold recirculation: low H₂O/low SO₂

Test protocols to be evaluated:

- use of Pt catalyst
- crucible (covered sample) vs. ash slurry
- cycle frequency 10 x 100h vs. 500h x ?
- goal: "actual" rate or accelerated?

Metal loss measurement

- box plots capture variable attack
- scale thickness (not rod diameter)

Ash composition: how changed by oxy-firing?

Summary: Creep in steam

- 1.800°C: completing work on Ni-base 740 (Ni-23Cr-20Co); 230 (Ni-22Cr-14W) air vs. steam in-situ vs. ex-situ anneal (thermal effect)
- 2.650°C:

Grade 91 (9Cr-1Mo) air vs. steam coated vs. uncoated

two in-situ creep rigs

800°C: 230/740 limited steam effect Creep rupture tests in air and 1 bar steam

- 230: no effect of in-situ or ex-situ steam
- 740: microstructural reason for decreased life?
 - alloy/oxide characterization in progress
 - task will conclude this summer with paper

Grade 91: higher lifetime in steam 650°C 100MPa in air and 1 bar steam

Two concerns: temperature load transfer Verified similar oxide formed on coupon in steam

Milestones FY11

- Done Procure coatings for creep testing (12/10)
- Done Initial assessment of CO₂ role (6/11)
- Done Complete 600°C coal ash testing (6/11) Delayed (9/11)- In-situ 650°C creep testing (Resource delays/followup on results)

FY12

- Done Report CO₂-H₂O effects (12/11)
- Done Complete 600°-650°C steam tests (3/12)
- Complete in-situ Ni-base creep testing (6/12)
- Complete 700°C coal ash characterization(9/12)

Summary

Four tasks: gas only, with ash, creep, coatings

Gas only: further work on 600°C CO₂ effect 650°C steam testing complete

Coal ash corrosion:

further data analysis of 600°C results

- Oxy-firing no worse with same ash FY12 focus on temperature series add "cold" oxy-firing conditions

Creep: T91 work at 650°C in progress Ni-base: completing characterization

Coatings - final work on model/creep effects

CLEAN COAL. COOL.

800°C model Ni-22Cr alloys 17bar steam, 2,000h exposure

Model alloys: simulate Al, Ti effect on internal oxidation

Ni-18Cr alloys (282) fabricated (2)

Future: quantify depth of attack continue to 5,000h expose to coal ash

Fe-xCr model binary alloys 1 and 17bar steam, 1-2 kh exposures

Here, model alloys perform worse than expected Need to fill in with additional temperatures Next question is about ternary additions (Mn, Si...)

Coating commercialization (slow)

- No industry interest in coating 8-11%Cr steels peak application is ~600°C - no interdiffusion
- More interest for austenitics (304, 347, etc.) boiler application limited to ~650°C phase boundary will limit interdiffusion 304H/347H tube explosions created interest EPRI funding for coating demonstration:

900°C steam 5,000h

Fe-9Cr in Steam vs. Humid Air comparison of mass gain and reaction products 650°C, 1202°F

Similar attack in steam and wet air (10±1 vol.% H₂O) Define failure: must have environment that attacks substrate Prior work in lab. air could not define coating lifetime

Effect of temperature on C_b ~40µm coatings on Fe-Cr at 650°-800°C in H₂O

Six failures of thin coatings, one higher AI activity coating Agüero: 650°C slurry coating failed at ~60kh in steam If temperature relationship is understood, this data set forms the basis for a comprehensive lifetime model

Creep Testing of P92 (Fe-9Cr-2W) Effect of as-deposited coating thickness

Specimen with thin coating has better creep resistance Effect of coating can be modeled as if coated layer absent Suggests that thin coatings are preferable Dryepondt et al., Surf. Coat. Tech. (2006)

Unusual Ti distribution in scale Cast alloy 282 after 5kh in steam at 800°C

Electron probe analysis: Typical internal AI + Ti oxidation Ti "layer" at both gas & metal side

Scale after 5kh lab air:

~12%Cr needed at 550°C For protective behavior at 17bar steam

Surprisingly, little difference in 2.25-11%Cr steels 5,000h cross-sections in progress

800°C steam follow up work Alloy 282: 5kh in 17bar steam or lab. air

New coal ash tests: H₂O added Air- and Oxy-firing conditions: 600°C, 500h

Modified gas train to add H₂O to test Mass gain: not a strong effect of H₂O Change to oxy-firing had strongest effect on high Cr

Evaluated weld-overlay coupons Air- and Oxy-firing conditions: 600°C, 500h

	Nominal composition wt.%				from Titanova
	Fe	Ni	Cr	other	
309L	60	14	23	1Mn, 1S	5i
8020		80	20		Cu plate
33	33	31	33	2Mo,1C	Cu inner: diluted
52	9	63	29		309L overlay
72		57	43	0.3Ti	
C22	3	58	23	13Mo,3	W

Rectangular coupons: removed overlay from tube

- ~1mm thick
- face adjacent to substrate has some dilution
- mass change data meaningless

Box plots to quantify attack Air- and Oxy-firing conditions: 600°C, 500h

40 data points taken from 500X pictures including scale + internal oxidation high Ni coating more oxidation resistant attack not increased in oxy-firing conditions

Ex-situ testing: anneal vs. steam 2kh anneal to account for thermal effect

230: no effect of 2kh in steam at 800°C
740/617: decrease life after 2kh steam
larger decrease with 800°C 2kh anneal (?)

Coating results at 600°C

Low AI content chemical vapor deposition coating

Conclusions:

Coating prevents thick oxide formation in steam Coating less effective on low Cr substrates CO_2 -H₂O is most aggressive environment